Neural representation of the taste of NaCl and KCl in gustatory neurons of the hamster solitary nucleus.

نویسندگان

  • J D Boughter
  • S J St John
  • D V Smith
چکیده

NaCl and KCl are monovalent salts that can be discriminated behaviorally by hamsters on the basis of their tastes. We examined the effects of the passive Na+ channel blocker amiloride on responses to both of these salts in 34 taste-responsive neurons of the nucleus of the solitary tract (NST) in the hamster. The effects of amiloride were assessed with two different, commonly employed stimulus protocols. Additionally, concentration-response functions for each salt were measured in 37 neurons. Cells were characterized by their best response to (in M) 0. 03 NaCl, 0.1 sucrose, 0.003 HCl, 0.001 quinine hydrochloride, and 0. 1 KCl. In neurons classified as NaCl-best, amiloride reversibly blocked responses to both NaCl and KCl. In neurons classified as HCl-best, amiloride had no effect on either stimulus. In sucrose-best neurons, amiloride blocked the response to NaCl but not KCl. These results support the hypothesis that both salts are transduced by at least two different receptor mechanisms. In the NST, information arising from these different inputs is maintained in discrete populations of neurons. In addition to differences in amiloride sensitivity, the cell types also differed in their responses to the salts across concentration. At midrange salt concentrations, NaCl-best neurons were far more responsive to NaCl than KCl, whereas HCl- and sucrose-best neurons responded equivalently to the two salts at all concentrations. Because NaCl- and HCl-best cells cannot by themselves distinguish NaCl from KCl, it is the relative activity across these cell types that comprises the code for taste discrimination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural representation of salts in the rat solitary nucleus: brain stem correlates of taste discrimination.

One mechanism of salt taste transduction by gustatory receptor cells involves the influx of cations through epithelial sodium channels that can be blocked by oral application of amiloride. A second mechanism is less clearly defined but seems to depend on electroneutral diffusion of the salt through the tight junctions between receptor cells; this paracellular pathway is insensitive to amiloride...

متن کامل

Neural representation of bitter taste in the nucleus of the solitary tract.

Based on the molecular findings that many bitter taste receptors (T2Rs) are expressed within the same receptor cells, it has been proposed that bitter taste is encoded by the activation of discrete neural elements. Here we examined how a variety of bitter stimuli are represented by neural activity in central gustatory neurons. Taste responses (spikes/s) evoked by bathing the tongue and palate w...

متن کامل

Amygdalofugal influence on processing of taste information in the nucleus of the solitary tract of the rat.

Previous studies have shown that corticofugal input to the first central synapse of the ascending gustatory system, the nucleus of the solitary tract (NST), can alter the way taste information is processed. Activity in other forebrain structures, such as the central nucleus of the amygdala (CeA), similarly influence activation of NST taste cells, although the effects of amygdalofugal input on n...

متن کامل

Medullary taste modulation by nucleus accumbens shell 1 Descending projections from the nucleus accumbens shell excite 1 activity of taste - responsive neurons in the nucleus of the solitary 2 tract in the hamster 3 4 5

30 31 The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first 32 and second relays in the rodent central taste pathway. A series of electrophysiological 33 experiments revealed that spontaneous and taste-evoked activities of brainstem gustatory 34 neurons are altered by the descending input from multiple forebrain nuclei in the central taste 35 pathway. The nucle...

متن کامل

Descending projections from the nucleus accumbens shell excite activity of taste-responsive neurons in the nucleus of the solitary tract in the hamster.

The nucleus of the solitary tract (NST) and the parabrachial nuclei (PbN) are the first and second relays in the rodent central taste pathway. A series of electrophysiological experiments revealed that spontaneous and taste-evoked activities of brain stem gustatory neurons are altered by descending input from multiple forebrain nuclei in the central taste pathway. The nucleus accumbens shell (N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 81 6  شماره 

صفحات  -

تاریخ انتشار 1999